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SUMMARY

Extensive axonal pruning and neuronal cell death are
critical events for the development of the nervous
system. Like neuronal cell death, axonal elimination
occurs in discrete steps; however, the regulators of
these processes remain mostly elusive. Here, we
identify the kinesin superfamily protein 2A (KIF2A)
as a key executor of microtubule disassembly and
axonal breakdown during axonal pruning. Knock-
down of Kif2a, but not other microtubule depoly-
merization or severing proteins, protects axonal
microtubules from disassembly upon trophic depri-
vation.We further confirmed and extended this result
to demonstrate that the entire degeneration process
is delayed in neurons from the Kif2a knockout mice.
Finally, we show that the Kif2a-null mice exhibit
normal sensory axon patterning early during devel-
opment, but abnormal target hyperinnervation later
on, as they compete for limited skin-derived trophic
support. Overall, these findings reveal a central
regulatory mechanism of axonal pruning during
development.

INTRODUCTION

The nervous system is shaped during development by progres-

sive and regressive events. Axonal pruning, a strategy used by

the nervous system to remove exuberant or misguided connec-

tions, often occurs via local axonal degeneration (Coleman,

2005; Low and Cheng, 2006; Luo and O’Leary, 2005). The

degeneration process is characterized by a series of discrete

steps. Disassembly of microtubules (MTs) is the earliest cellular

event, which is followed by degradation of other cytoskeletal

elements, such as neurofilaments (NFs) and fragmentation of

the axon (Watts et al., 2003; Zhai et al., 2003). This series of steps

is also exhibited in injured axons following nerve transection

(Zhai et al., 2003). To date, the mechanisms and molecules

executing MT breakdown are largely unknown. Moreover, the
causal relationship betweenMT integrity and breakdown of other

cytoskeletal components during axonal degeneration is unclear

(Saxena and Caroni, 2007).

Here, we show that the MT-stabilizing agent paclitaxel

protects against MT disassembly in different paradigms of

axonal degeneration, trophic (NGF) deprivation, or axotomy.

We further demonstrate that this protection can be largely

mimicked by ablation of a single MT-depolymerization protein

of the kinesin-13 family, kinesin superfamily protein 2A (KIF2A).

Interestingly, degradation of Tau (tubulin-associated unit) pre-

cedes MT breakdown by KIF2A. However, this degradation is

not sufficient to induce MT disassembly by itself. Last, we

demonstrate that the initial growth and arrangement of sensory

axons, which are NGF independent, are perfectly normal in

Kif2a-null mice. However, these mice exhibit severe skin hyper-

innervation by sensory axons, a process that is restricted by

competition for limited trophic support. Overall, these findings

uncover a key regulatory mechanism of axonal pruning during

development.

RESULTS

MT Depolymerization Is Inhibited by the MT-Stabilizing
Agent Paclitaxel
MT-destabilization drugs, such as vincristine or colchicine,

induce axonal degeneration (Saxena and Caroni, 2007). How-

ever, whetherMT-stabilization drugs can preventMT breakdown

during axonal degeneration is not known. Therefore, we tested

whether paclitaxel, a strongMT polymerization agent, can inhibit

MT depolymerization in two in vitro models of axonal degenera-

tion; trophic (NGF) deprivation, in which axons degenerate due

to lack of trophic support, representing a developmental elimina-

tion process, and axotomy in which axons are cut from their cell

bodies. Dorsal root ganglia (DRGs) were dissected from mouse

embryos at embryonic day 13.5 (E13.5), and, after 48 hr in cul-

ture, axonal degeneration was induced and the MTs underwent

depolymerization (Figures 1A–1C and 1G). Application of pacli-

taxel caused inhibition of the MT depolymerization process in

both models, with the MTs appearing intact (Figures 1D–1G).

To further characterize the cytoskeletal changes during degener-

ation, we conducted a biochemical analysis of NGF-deprived
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Figure 1. Paclitaxel Protects MT from Degradation upon NGF Deprivation, but NFs Are Only Minimally Protected

(A–G) DRG explants were cultured for 48 hr in NGF-containingmedium. For the following 24 hr, they were supplied with NGF (A and D), deprived of NGF (B and E),

or axotomized for 8 hr (C and F). The explants were then immunostained for tubulin bIII. Upon NGF deprivation or axotomy, the MTs undergo breakdown, as can

be seen by the punctuated form of the MTs (B, C, and G). The addition of 10 mM paclitaxel protected the MTs, as no degradation was detected 24 hr after NGF

deprivation (E–G). MT depolymerization average index value ± SD was calculated for each condition (G), Mann-Whitney test, ***p < 0.001.

(H) Biochemical analysis of the axonal cytoskeleton. DRG explants were cultured for 48 hr in NGF-containing medium. For the next 20 hr, these explants were

either supplied with (+) or deprived of (�) NGF.MT polymerization level was evaluated using immunoblot analysis for a-tubulin and its PTMs antibodies. MTs were

both degraded, as detected by total a-tubulin, and depolymerized as revealed by the strong reduction in acetylation, detyrosination, and polyglutamylation state,

upon NGF deprivation. In the presence of 10 mM paclitaxel, MTs remained polymerized and were not degraded. NF degradation observed after NGF deprivation

was only slightly attenuated in the presence of paclitaxel. Scale bar, 100 mM.

See also Figure S1.
axons (Figure 1H). In agreement with the cellular analysis, pacli-

taxel inhibited MT degradation after NGF withdrawal, as in its

presence there was no reduction in a-tubulin (Figure 1H). Next,

we examined the changes in tubulin posttranslation modifica-

tions (PTMs), which mark subpopulations of MTs during the

degeneration process. Several modifications, including acetyla-

tion, detyrosination, and glutamylation, are enriched in stable

MTs (Verhey and Gaertig, 2007). Indeed, following NGF with-

drawal, we detected a strong decrease in these modifications,

indicating MT destabilization. However, in the presence of pacli-

taxel, the MTs remained polymerized as indicated by all the

tubulin PTMs examined (Figure 1H). In contrast to its powerful

stabilizing effect on MTs, paclitaxel showed only minor protec-

tion of NFs, which are degraded during the axonal degeneration

process (Figure 1H). This implies that other pathways operate in

parallel to MT depolymerization during axonal elimination.

Similar results were obtained using the axotomy model (Fig-

ure S1). Overall, these results suggest that elevation of MT poly-

merization can protect them from disassembly during axonal

degeneration.
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Degradation of the MT-Stabilizing Protein, Tau, Is
Insufficient for Inducing Axonal MT Depolymerization
The experiments with paclitaxel prompted us to hypothesize that

specific MT-stabilizing proteins might be degraded during

axonal degeneration. Tau (also known as MAPT) belongs to a

widespread family of MAPs. It is an abundant protein in the cen-

tral and peripheral nervous system, where it is expressed pre-

dominantly in neurons and enriched in axons and, like paclitaxel,

promotes tubulin assembly into MTs (Binder et al., 1985). Impor-

tantly, Tau binds to a site on b-tubulin that overlaps the paclitaxel

site (Kar et al., 2003). In addition, hyperphosphorylation of Tau

and its subsequent degradation prevent it from binding to MTs,

leading to a decrease in MT stability (Lindwall and Cole, 1984).

Tau is a known substrate of caspase-6, which is activated

upon NGF deprivation within axons (Graham et al., 2011).

In light of the above, we monitored the fate of axonal Tau after

NGF deprivation or axotomy using an insert culture system that

enables effective purification of axonal material (Schoenmann

et al., 2010). Degradation of Tau was detected 14 hr after trophic

withdrawal, when the axonal MTs are still intact (Figure 2A). The



Figure 2. Tau Degradation Is Not Sufficient for Promoting MT Breakdown

(A and B) DRG explants were cultured for 48 hr in NGF-containing medium. These explants were then deprived of NGF for 14 hr (A) or axotomized for 4 hr (B).

Axonal Tau was detected by western blot using two antibodies, Tau5 (total Tau) and PHF (phosphorylated Tau). A significant reduction of total Tau was detected

using Tau5 antibody 14 hr after NGFwithdrawal, while the phosphorylated formwas only slightly reduced (A). Both antibodies detected clear reduction of Tau 4 hr

after axotomy (B).

(C–G) Tau expression was reduced using siRNA treatment as detected by Tau5 and PHF (C), yet this reduction did not induce MT depolymerization, as evaluated

by both the immunostaining for bIII tubulin (D and E) and immunoblotting for a-tubulin, acetylation, detyrosination, and polyglutamylation (G). MT stability average

index value ± SD was calculated for each siRNA treatment (F), Mann-Whitney test. NS, nonsignificant.

Scale bar, 100 mM. See also Figures S2 and S3.
hyperphosphorylated form of Tau was only slightly reduced in

this time frame (Figure 2A). This might indicate that Tau is hyper-

phosphorylated during trophic deprivation. Tau was completely

degraded by 20 hr (Figure S2). In addition, at 4 hr postaxotomy

the level of Tau was reduced, and by 6 hr it was eliminated (Fig-

ures 2B and S2). However, treatment of the sensory neuronal

cultures with small interfering RNA (siRNA) against Tau did not

induce axonal MT depolymerization (Figures 2D–2G), even

though Tau was markedly reduced (Figure 2C). These results

indicate that the degradation of Tau during axonal degeneration

is not in itself sufficient to induce MT depolymerization.

Knockdown of Kif2a, but Not Other MT-Severing
Proteins, Inhibits MT Depolymerization
The inability of Tau knockdown to induce axonal MT depolymer-

ization may be due to lack of strong MT depolymerization activ-

ity. Therefore, we examined the role of MT-destabilizing proteins

in axonal MTs depolymerization, using siRNA knockdown in

combination with the NGF-deprivation model. We screened

several candidates, including the four Stathmin family members

(Stmn1–4), Katanin, Spastin, and Kif2a (Conde and Cáceres,

2009). Strikingly, only the knockdown of Kif2a strongly inhibited

MT depolymerization, revealing MT preservation 24 hr after NGF

withdrawal (Figure S3).
Genetic Ablation of Kif2a Delays MT Disassembly and
Axonal Degeneration
To further establish the role of Kif2a in initiating axonal fragmen-

tation, we performed a temporal analysis of axonal degeneration

after NGF deprivation using neurons from the Kif2a knockout

(KO) mice (Homma et al., 2003). Clear inhibition in MT depoly-

merization and its subsequent degradation can be detected at

all time points 18–27 hr after NGF deprivation (Figures 3A–3K).

However, by 30 hr the MTs from the Kif2a KO neurons were

completely depolymerized as well, representing a delay of up

to 9 hr. These cellular results are also supported by our biochem-

ical analysis as ablation ofKif2a preservedMT integrity fromboth

depolymerization and degradation, while NF degradation was

only slightly attenuated in Kif2a KOmice (Figure 3L). Importantly,

the protection is not due to inhibition of caspase-3, as it is fully

active in the Kif2a KO axons (Figure S4). Tau degradation was

also attenuated, in both paclitaxel-treated and Kif2a KO neurons

(Figures 3M and 3N). Therefore, under conditions in which the

MTs are preserved, Tau might still be bound to the polymerized

MTs, this shade Tau from the degradation machinery.

In the Kif2a KO neurons, a clear protection of the MTs was

observed 8 hr after axotomy (Figures 3O–3Q). Yet by 12 hr the

MTs were depolymerized. In addition, MT degradation was

attenuated, as indicated by the preservation of a-tubulin, while
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Figure 3. Genetic Ablation of Kif2a Delays MT Depolymerization upon NGF Deprivation

(A–K) DRG explants of either Kif2a KO embryos (F–J) or WT littermate (A–E) were cultured for 48 hr in NGF-containing medium. These explants were either

supplied with (A and F) or deprived of (B–E and G–J) NGF for an additional 18 (B and G), 21 (C and H), 24 (D and I), and 27 hr (E and J) and then immunostained for

tubulin bIII. Deprived of NGF, the axonal MTs of the WT neurons were depolymerized and degraded, as can be seen by the punctuated form of the MTs (B–E). In

contrast, the axonal MTs breakdown of the Kif2a KO neurons was inhibited after NGF deprivation (G–J). MT depolymerization average index value ± SD was

calculated for each condition and genotype (K), Mann-Whitney test, ***p < 0.001.

(L) Genetic ablation of Kif2a protects MT but hardly protects NFs from degradation upon NGF deprivation. DRG explants were cultured for 48 hr in NGF-con-

taining medium. Then they were deprived of NGF for the next 20 hr. MT polymerization level was evaluated using immunoblot analysis for a-tubulin and its PTM

antibodies. In WT axons upon NGF deprivation, MTs were both degraded, as detected by a-tubulin and depolymerized, as detected by the reduction in acet-

ylation, detyrosination, and polyglutamylation. In theKif2a KO axons, MTsweremore polymerized and less degraded. NF degradation upon NGF deprivation was

only slightly attenuated in the Kif2a KO neurons, compared to the WT controls.

(M andN) Tau degradation following NGF deprivation is attenuated by eitherKif2a ablation or paclitaxel. Tau levels were evaluated bywestern blot using Tau5 and

PHF antibodies. In the presence of 10 mM paclitaxel (N), or the genetic ablation of Kif2a (M), the degradation of Tau was attenuated.

(O–Q) Kif2a ablation protects MTs from degradation after axotomy. DRG explants were cultured for 48 hr in NGF-containing medium. These explants axons were

transected and immunostained for tubulin bIII at 8 hr after the transaction (O and P). Upon transection, the MTs undergo breakdown, as can be seen by the

punctuated form of the MTs (O). While in the Kif2a KO, MTs were protected and only a small fraction was degraded 8 hr after transaction (P). Quantification of a

MTs depolymerization average index value ± SD was calculated for each condition and genotype (P), Mann-Whitney test, ***p < 0.001.

(R–X) Kif2a ablation delays axonal degeneration. DRG explants from WT (R–T) and Kif2a KO (U–W) embryos were cultured, treated as described above, and

imaged by phase microscopy. Axonal degeneration average index value ± SEMwas calculated from each condition and genotype (X), Mann-Whitney test, ***p <

0.001. Scale bar, 100 mM.

See also Figures S4 and S5.
its PTM levels were preserved only to a small extent (Figure S5).

Finally, the overall axonal structure was preserved as observed

by phase microscopy in the Kif2a KO axons 24 hr after trophic

withdrawal and, to a small degree, 8 hr after axotomy (Figures

3R–3X). In summary, these results demonstrate that, upon

trophic withdrawal and (to a lesser extent) after axotomy,

KIF2A plays a key role in MT depolymerization and axonal

degeneration.
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KO of Kif2a Causes Skin Hyperinnervation
Gain- and loss-of-function studies have established skin-derived

NGF as a key regulator of innervation by sensory axons during

development (Albers et al., 1994; Patel et al., 2000; Wickrama-

singhe et al., 2008). Therefore, we postulated that the resistance

of Kif2a KO sensory axons to NGF deprivation would lead to

hyperinnervation of the skin by these axons. To test this hypoth-

esis, we stained sections of E15.5 embryos, Kif2a KO, and



Figure 4. Kif2a KO Mice Exhibit Developmental Skin Hyperinnervation by Sensory Axons

(A–G) Paraffin sections of E15.5 embryos. Shown here are peripheral axons adjacent to the skin labeled with antitubulin bIII antibody (A and B) and confocal

analysis of the same sections (C and E) of (A) and (D and F) of (B). Hyperinnervation of the sensory axons was detected inKif2aKO (B, D, and F) when compared to

their WT littermate embryos (A, C, and E). Innervation density index value ± SD was calculated from 180 sections of four embryos from each genotype (G), Mann-

Whitney test, ***p < 0.001.

(H–L) The peripheral nervous system pattern in the Kif2a KO mice is normal early during development. As can be detected in whole-mount anti-NF analysis of

E12.5WT (H) andKif2aKO (I) and in the section of nerves, labeled with tubulin bIII antibody, exiting the DRGat E12.5 (J and K). Nerve density index value ±SDwas

calculated from 360 sections of four embryos from each genotype (L), N.S., nonsignificant.

(M–O) The number of sensory neurons in the DRGs does not differ in the Kif2a KO mice, as detected by islet1 antibody, in E15.5 WT (M) and Kif2a KO (N). Total

Islet1-positive neurons ± SD was calculated from 110 sections of three embryos of each genotype (O). N.S., nonsignificant.

Scale bars, 50 mM (A–D, J, K, M, and N) and 20 mM (E and F).
wild-type (WT) littermates and examined the innervation of the

skin in the ventral body surface. Significant enhancement was

detected in the amount of axons innervating the skin in the

Kif2a KO embryos (Figures 4A–4G). The pattern of cutaneous

sensory axons early during development at E12.5 is NGF

independent (Davies et al., 1987; Lumsden and Davies, 1983;

Wickramasinghe et al., 2008). Indeed, we did not detect any

abnormalities in the growth, branching, or nerve density of these

axons in the Kif2a KO embryos at E12.5 (Figures 4H–4L). More-

over, the number of sensory neurons in the DRG at E15.5 (when

the skin hyperinnervation is observed) is identical between WT

and Kif2a KO (Figures 4M–4O). Thus, Kif2a KO enables sensory

axons to hyperinnervate the skin between E12.5 and E15.5 in the

presence of limited trophic support.

DISCUSSION

Microtubule breakdown is a hallmark of axonal degeneration,

both during development and after injury (Watts et al., 2003;

Zhai et al., 2003). However, the mechanism of MT breakdown

during the degeneration process has yet to be elucidated.

Here, we show that MT depolymerization is an active process

that is regulated by a specific disassembly protein, KIF2A.

Whether other severing proteins control MT disassembly during

axonal pruning remains an open question. Studies in the fly did

not reveal, so far, a role for Stathmin, Katanin, or Spastin in neu-
rite pruning and degeneration (Graf et al., 2011; Lee et al., 2009;

Stone et al., 2012; Tao and Rolls, 2011). Interestingly, it was

recently suggested that stathmin2/SCG10 delays axonal degen-

eration upon axotomy (Shin et al., 2012).

How is KIF2A regulated during axonal degeneration? We did

not observe any elevation in KIF2A protein levels, suggesting

that it is not regulated at the transcriptional or translational level

upon trophic withdrawal (Figure S3). In principle, KIF2A might be

constitutively active, and simple elimination of MAPs would then

enable its action. However, our results argue against this model,

as in such case axonal degeneration should have been observed

by knockdown of Tau or Crmp2. Instead, we propose that

signaling events that initiate the degeneration process stimulate

the activity of KIF2A. In agreement, several reports have shown

that KIF2A activity is controlled by phosphorylation (Jang et al.,

2009; Mennella et al., 2009; Noda et al., 2012). Therefore,

kinases that regulate the axonal self-destruction program may

activate KIF2A.

Previous studies and our work suggest that the cell employs

parallel degeneration pathways to disassemble the axonal cyto-

skeleton. The calpain inhibitor ALLN or inhibition of the IkB

kinase (IKK) specifically prevent NF degradation (Gerdts et al.,

2011; Zhai et al., 2003). In contrast, paclitaxel treatment and

Kif2a ablation were found to protect MTs. However, it seems

that some level of coregulation of these pathways does exist

as protecting the MTs very partially preserves the NFs after
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NGF withdrawal. More importantly, we observed that axonal

structure is largely preserved after trophic deprivation in Kif2a

KO neurons. This suggests that although the cell employs

several parallel pathways to eliminate cytoskeletal and regula-

tory proteins, depolymerization of MTs is a critical event that

regulates other destruction pathways. This may also explain

why depolymerization of MTs but not actin or NFs elimination

induces axonal degeneration (Walker et al., 2001; Zhai et al.,

2003).

The neurotrophic hypothesis argues that proper skin innerva-

tion by sensory axons is achieved through competition for a

limited amount of NGF (Davies, 1996; Harper and Davies,

1990). Our results suggest that axonal pruning by KIF2A is an

important part of this process. The hyperinnervation we detect

in the Kif2a KOmice is not due to interference with the apoptotic

machinery, which is not impaired in these neurons, as the

number of DRG neurons in the Kif2a KO is indistinguishable

from the number in the WT. Moreover, the NGF-independent

initial growth and pattern of sensory axons is normal early in

development, suggesting that there is no general alteration of

these axons as was previously observed in the CNS (Homma

et al., 2003). Therefore, Kif2a is a pruning factor that regulates

target innervation by sensory axons. Whether Kif2a controls

axonal pruning in the CNS or pathological degeneration of the

nervous system remains to be discovered.
EXPERIMENTAL PROCEDURES

Antibodies

Antibodies and dilutions used for immunofluorescence staining: tubulin b-III

(Covance, MRB-435P, 1:1,000), cleaved caspase-3 (Cell Signaling, 9664,

1:100). Anti-mouse or anti-rabbit antibodies conjugated with either Alexa

549 or Alexa 488 fluorophores were used at 1:200 (Jackson ImmunoResearch

Laboratories). For immunoblotting, the following antibodies and dilutions were

used: tubulin bIII (1:2000), tubulin a (Millipore, 05-829, 1:1,000), tubulin

detyrosinated (Millipore, AB3201, 1:1,000), tubulin acetylated (Convance,

MMS-413R, 1:1,000), tubulin glutamylated: GT335 and PolyE (kindly provided

by Prof. C. Janke, CRBM, 1:2,000). Tau antibodies: Tau5 and PHF1 (kindly pro-

vided by Dr. E. Elliott, produced at the Lab of Prof. I. Grinzburg, Weizmann

Institute of Science, Israel, 1:1,000), NF (2H3) and Islet1 (Developmental

Studies Hybridoma Bank, 1:10 and 1:1,000, respectively), actin (MP Biomed-

icals, 691001, 1:5,000), STMN1 (Abcam, ab52906, 1:1,000), STMN2 (kindly

provided by Prof. E Coffey, Turku University, 1:1,000), and KIF2A (Abcam,

ab37005, 1:500). Immunoblots were developed using horseradish-peroxi-

dase-labeled donkey anti-rabbit or anti-mouse IgG followed by detection

with chemiluminescence.

Mouse Strains

The Kif2a KOmouse strain was previously described (Homma et al., 2003). All

of the animal experiments were done according to the protocols that were

approved by the Weizmann Institute of Science Institutional Animal Care and

Use Committee.

Explant Culture

Dorsal root ganglion (DRG) explants of E13.5 mice were aseptically removed

and cultured on poly-d-lysine (PDL)-laminin-coated plates. The explants

were grown in neurobasal (NB) medium supplemented with 2% B-27, 1%

glutamine, 1% penicillin-streptomycin, and 25 ng/ml mNGF 2.5S (Alomone

Labs; N-100) for 48 hr before treatments. For NGF deprivation, the medium

was exchanged for medium lacking NGF with addition of 0.1 mg/ml rabbit

anti-NGF neutralizing antibodies (Alomone Labs; AN-240). Other conditions

required the addition of 10 mM paclitaxel (Sigma-Aldrich; T7191).
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DRG-Dissociated Neurons

DRGs from E13.5 mice were aseptically removed and pelleted in Hank’s

balanced salt solution (Biological Industries, Beit Haemek, Israel) for 10 min

and dissociated with 5% trypsin 37�C for 2 min. The trypsin was neutralized

with 10 ml L15 medium supplemented with 5% fetal calf serum. The cells

were then centrifuged at 2,800 rpm 21�C for 4 min and resuspended in NB

medium supplemented with B-27, glutamine, and 12.5 ng/ml NGF. The

dissociated cells were cultured onto 18 mm PDL-laminin-coated coverslips

in 12-well plates.

siRNA Treatment

siRNA oligonucleotide sequences were used to target the following proteins:

Stmn1, Stmn2, Stmn3, Stmn4, Katanin, Spastin, and Kif2a (Dharmacon, ON-

TARGETplus SMARTpool). For negative control, a nontarget sequence was

used (Dharmacon, ON-TARGETplus Non-Targeting Pool, D-001810). DRG-

dissociated cells were transfected with siRNA, using the protocol supplied

with DharmaFECT 4 (Dharmacon, T-2004-03). Briefly, siRNA and the transfec-

tion reagent were each diluted separately into NB medium without serum and

antibiotics for 5 min; then, the siRNA was added to the medium with the trans-

fection reagent. After an additional 20min incubation, the transfection reagent-

siRNA complex was added to the dissociated cells, and grown in NB medium

containing 25 ng/ml NGF, without serum and antibiotics. Fifteen hours later,

the transfection reagent was removed by replacing the medium with a com-

plete medium and the neurons were cultured for an additional 48 hr. NGF

deprivation was performed as described above. The final concentration of

the siRNA was 0.1 mM. The level of the target protein, reduced by its specific

siRNA treatment, was evaluated by western blot analysis.

Axonal Caspase Activity Assay

Axonal caspase activity assay was preformed as described in Schoenmann

et al. (2010).

Immunohistochemistry of Mouse Embryos

E15.5 or E12.5 embryoswere fixed for 24 hr in 4% formaldehyde. The following

day, the embryos were embedded in paraffin, and 4 mm transversal sections

were taken. The slides then underwent deparaffinization with xylene and

ethanol. Antigen retrieval was performed in a pressure cooker in a sodium

citrate buffer at 125�C. The slides were stained with tubulin b-III antibody for

axon visualization and with anti-islet1 for sensory neuron detection.

Whole-Mount Staining

E12.5 mouse embryos (Kif2a KO and WT littermates) were stained as

described (Yaron et al., 2005).

Axonal Quantification In Vitro and In Vivo

All the data were quantified using computerized algorithms; for details, please

see Extended Experimental Procedures.
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